Accelerated melting of mountain glaciers in the Cascade Range could impact water supplies in the Pacific Northwest region over the coming decades, according to new research.

By Kathryn Cawdrey

Glaciers can buffer water supplies. They melt when it’s really warm and there aren’t many snows to melt. Glacier melt will coincide with declining snow melt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins.

"Glaciers can buffer water supplies. They melt when it’s really warm and there aren’t many snows to melt. Glacier melt will coincide with declining snow melt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins."

The overall impacts of glacial melt in the Pacific Northwest will vary depending on the system considered, Frans said. For the region as a whole, the shift of the snowmelt season will coincide with declining snowmelt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins.

While low-elevation glaciers have already hit their peak melt, high-elevation glacial melt is continuing to increase. In a new study, scientists used computer modeling to estimate the flow of mountain glacier meltwater, which could impact water supplies in the region.

"Glaciers can buffer water supplies. They melt when it’s really warm and there aren’t many snows to melt. Glacier melt will coincide with declining snow melt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins."

The overall impacts of glacial melt in the Pacific Northwest will vary depending on the system considered, Frans said. For the region as a whole, the shift of the snowmelt season will coincide with declining snowmelt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins.

While low-elevation glaciers have already hit their peak melt, high-elevation glacial melt is continuing to increase. In a new study, scientists used computer modeling to estimate the flow of mountain glacier meltwater, which could impact water supplies in the region.

"Glaciers can buffer water supplies. They melt when it’s really warm and there aren’t many snows to melt. Glacier melt will coincide with declining snow melt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins."

The overall impacts of glacial melt in the Pacific Northwest will vary depending on the system considered, Frans said. For the region as a whole, the shift of the snowmelt season will coincide with declining snowmelt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins.

While low-elevation glaciers have already hit their peak melt, high-elevation glacial melt is continuing to increase. In a new study, scientists used computer modeling to estimate the flow of mountain glacier meltwater, which could impact water supplies in the region.

"Glaciers can buffer water supplies. They melt when it’s really warm and there aren’t many snows to melt. Glacier melt will coincide with declining snow melt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins."

The overall impacts of glacial melt in the Pacific Northwest will vary depending on the system considered, Frans said. For the region as a whole, the shift of the snowmelt season will coincide with declining snowmelt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins.

While low-elevation glaciers have already hit their peak melt, high-elevation glacial melt is continuing to increase. In a new study, scientists used computer modeling to estimate the flow of mountain glacier meltwater, which could impact water supplies in the region.

"Glaciers can buffer water supplies. They melt when it’s really warm and there aren’t many snows to melt. Glacier melt will coincide with declining snow melt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins."

The overall impacts of glacial melt in the Pacific Northwest will vary depending on the system considered, Frans said. For the region as a whole, the shift of the snowmelt season will coincide with declining snowmelt, resulting in lower river flows in the summer, after the high-elevation glaciers hit their melt peak around mid-century, the declining glacier mass loss and meltwater volume from 1960 to the present, and predict future changes to glacier mass and meltwater volume through 2099. They looked at both low-elevation areas and high-elevation maritime basins, but not so much for the lower elevation maritime basins.